Received 5 December 2006 Accepted 11 December 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

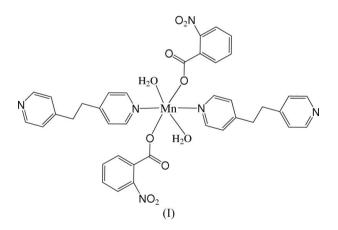
Li-Li Zhang,* Wei-Guang Zhang, Hui Zhong and Yu Zhang

Department of Chemistry, Huaiyin Teachers College, Huai'an, Jiangsu Province 223001, People's Republic of China

Correspondence e-mail: njlilyzhang@yahoo.com.cn

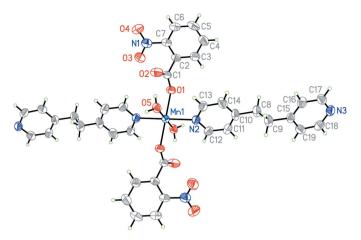
Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.052 wR factor = 0.073 Data-to-parameter ratio = 11.6

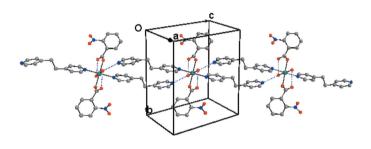

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(1,2-di-4-pyridylethane- κN)bis(2-nitrobenzoate- κO)manganese(II)

In the title mixed-ligand complex, $[Mn(C_7H_4NO_4)_2(C_{12}H_{12}-N_2)_2(H_2O)_2]$, was synthesized and its crystal structure was studied. The Mn atom is six-coordinated in slightly distorted octahedral coordination geometry by two N atoms of two 1,2-di-4-pyridylethane ligands (*L*), two O atoms of monodentate 2-nitrobenzoate ligands and two O atoms of water molecules. The Mn atom is located on a centre of inversion. A one-dimensional structure is formed in the [101] direction by intermolecular hydrogen bonds between the aqua ligands and N atoms of *L*. An intramolecular hydrogen bond between the other aqua ligand and a neighbouring O atom of a carboxylate group is also observed.


Comment

1,2-Di-4-pyridylethane (*L*) is a very popular ligand because of its structural versatility and hydrogen bonding in the construction of crystal engineering materials (Hong *et al.*, 1999). However, only seven mono-coordinated *L* ligands have been reported (Rochon *et al.*, 1998; Nel *et al.*, 2000; Hong *et al.*, 1999; Vollenhoven & Laubacher, 1976; Fu *et al.*, 2004; Girginova *et al.*, 2005; Ferbinteanu *et al.*, 1999) in 158 complexes (Cambridge Structural Database, Version 5.27, update of August 2006; Allen, 2002) constructed from the *L* ligand. We have now combined Mn^{II} cations with 2-nitrobenzoate anion and *L* as a secondary ligand, forming the title complex, [Mn(C₇H₄NO₄)₂(C₁₂H₁₂N₂)₂(H₂O)₂], (I), which is reported here.


Each carboxylate coordinates in a monodentate fashion and the Mn^{II} atom lies on a centre of symmetry. Fig. 1 shows the molecular structure of (I). The central Mn^{II} atom in (I) is coordinated by two O atoms from different 2-nitrobenzoate ligands, two N atoms from two ligands L and two O atoms of water molecules, resulting in a slightly distorted octahedral

© 2007 International Union of Crystallography All rights reserved

Figure 1

Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by spheres of arbitrary radii. (Symmetry operation used to generate equivalent atoms: -x, -y, -z.)

Figure 2

One-dimensional supramolecular structure of (I). Blue dashed lines indicate the hydrogen-bonding interactions.

coordination environment. Both L ligands act in a monocoordination mode and show an *anti* configuration. The Mn – O and Mn – N distances are comparable to the corresponding distances in related complexes (Ma *et al.*, 2004; Zhang *et al.*, 2002; Table 1). The *cis* angles at the central Mn^{II} atom are all close to 90°, with a maximum deviation of 3.92 (8)°. It is interesting to note that one O atom from a water molecule bonds with an adjacent N atom of L through a strong intermolecular hydrogen bond, and a one-dimensional supramolecular chain is formed in the [101] direction (Fig. 2). An intramolecular hydrogen bond between the other aqua ligand and a neighbouring O atom of a carboxylate groups is also observed (Table 2).

Experimental

A water-ethanol (1:1 v/v) solution (5 ml) of Mn(OAc)₂·4H₂O (0.0490 g, 0.2 mmol) was added to a water-ethanol (1:1 v/v) solution (5 ml) of 2-nitrobenzoic acid (0.0668 g, 0.4 mmol), NaOH (0.0160 g, 0.4 mmol) and 1,2-di-4-pyridylethane (0.0736 g, 0.4 mmol). A light-yellow powder was obtained after a week. The powder was recrystallized from a mixed solvent composed of dimethylformamide, ethanol and water (1:1:1 v/v/v) by slow evaporation at room temperature; light-yellow block-shaped crystals of (I) were obtained

after several days (yield 57.2%). Analysis calculated for $C_{38}H_{36}MnN_6O_{10}$: C 57.65, H 4.58, N 10.62%; found: C 57.39, H 4.67, N 10.45%.

Crystal data

$[Mn(C_7H_4NO_4)_2(C_{12}H_{12}N_2)_2-$	V = 1817.0 (5) Å ³
$(H_2O)_2]$	Z = 2
$M_r = 791.67$	$D_x = 1.447 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 10.4669 (16) Å	$\mu = 0.43 \text{ mm}^{-1}$
b = 13.256 (2) Å	T = 293 (2) K
c = 14.019 (2) Å	Block, light yellow
$\beta = 110.918 \ (4)^{\circ}$	0.20 \times 0.15 \times 0.10 mm

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.92, T_{\max} = 0.96$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2(F_o^2) + (0.0078P)^2]$
$wR(F^2) = 0.073$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.84	$(\Delta/\sigma)_{\rm max} < 0.001$
3751 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
322 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

10007 measured reflections

 $R_{\rm int} = 0.065$

 $\theta_{\rm max} = 26.5^{\circ}$

3751 independent reflections

2104 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Mn1-O5 Mn1-O1	2.1822 (17) 2.2100 (18)	Mn1-N2	2.281 (2)
O5-Mn1-O1 O5-Mn1-N2	86.42 (7) 89.13 (8)	O1-Mn1-N2	86.08 (8)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O5−H5 <i>B</i> ···O2	0.85	1.83	2.666 (3)	166
$O5-H5A\cdots N3^{i}$	0.85	1.91	2.756 (3)	172

Symmetry code: (i) x - 1, y, z - 1.

All the H atoms were placed at calculated positions and refined with a riding model; C-H = 0.93-0.97 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and CH₂, and O-H = 0.85 Å for water H atoms; $U_{iso}(H)$ values of water H atoms were refined.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Programme for Excellent Talents in Huaiyin Teachers College and Technological Research Foundation of Huai'an City for financial support.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bruker (2000). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Ferbinteanu, M., Marinescu, G., Roesky, H. W., Noltemeyer, M., Schmidt, H.-G. & Andruh, M. (1999). *Polyhedron*, 18, 243–248.
- Fu, Z.-Y., Hu, S.-M., Du, W.-X., Zhang, J.-J., Xiang, S.-C. & Wu, X.-T. (2004). *Chin. J. Struct. Chem.* 23, 176–182.
- Girginova, P. I., Paz, F. A. A., Paz, H. I. S., Nogueira, H. I. S., Silva, N. J. O., Amarale, V. S., Klinowski, J. & Trindade, T. (2005). J. Mol. Struct. 737, 221– 229.
- Hong, C. S., Son, S. K., Lee, Y. S., Jun, M. J. & Do, Y. (1999). *Inorg. Chem.* 38, 5602–5610.
- Ma, C.-B., Chen, C.-N., Liu, Q.-T., Chen, F., Liao, D.-Z., Li, L.-C. & Sun, L.-H. (2004). *Eur. J. Inorg. Chem.* pp. 3316–3325.
- Nel, A., Chapman, J., Long, N., Kolawole, G., Motevalli, M. & O'Brien, P. (2000). *Polyhedron*, **19**, 1621–1626.
- Rochon, F. D., Andruh, M. & Melanson, R. (1998). Can. J. Chem. 76, 1564– 1570.
- Vollenhoven, J. S. V. & Laubacher, A. E. (1976). J. Inorg. Nucl. Chem. 38, 2241.Zhang, X., Fan, C., Wang, W., Chen, C. & Liu, Q. (2002). Acta Cryst. E58, m688–m690.